Core Mathematics 4 Paper F
1.
$$f(x) = \frac{x^4 + x^3 - 13x^2 + 26x - 17}{x^2 - 3x + 3}$$
.

Find the values of the constants A, B, C and D such that

$$f(x) = x^2 + Ax + B + \frac{Cx + D}{x^2 - 3x + 3}.$$
 [4]

Use the substitution $u = 1 - x^{\frac{1}{2}}$ to find 2.

$$\int \frac{1}{1-x^{\frac{1}{2}}} dx.$$
 [6]

3. A curve has the equation

$$4\cos x + 2\sin y = 3$$
.

(i) Show that
$$\frac{dy}{dx} = 2 \sin x \sec y$$
. [4]

- Find an equation for the tangent to the curve at the point $(\frac{\pi}{3}, \frac{\pi}{6})$, giving your answer in the form ax + by = c, where a and b are integers. [3]
- (i) Express $\frac{3x+6}{3x-x^2}$ in partial fractions. [3]
 - $\int_{1}^{2} \frac{3x+6}{3x-x^{2}} dx$. (ii) Evaluate [4]

5.

The diagram shows the curve with equation $y = 4x^{\frac{1}{2}}e^{-x}$.

The shaded region bounded by the curve, the x-axis and the line x = 2 is rotated through four right angles about the x-axis.

Find, in terms of π and e, the exact volume of the solid formed.

[7]

6.
$$f(x) = \frac{3}{\sqrt{1-x}}, |x| < 1.$$

(i) Show that
$$f(\frac{1}{10}) = \sqrt{10}$$
. [2]

- (ii) Expand f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. [4]
- (iii) Use your expansion to find an approximate value for $\sqrt{10}$, giving your answer to 8 significant figures. [1]
- (iv) Find, to 1 significant figure, the percentage error in your answer to part (c). [2]

7. Relative to a fixed origin, two lines have the equations

$$\mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ -3 \end{pmatrix} + s \begin{pmatrix} 5 \\ 4 \\ -2 \end{pmatrix}$$

and

$$\mathbf{r} = \begin{pmatrix} a \\ 6 \\ 3 \end{pmatrix} + t \begin{pmatrix} -5 \\ 14 \\ 2 \end{pmatrix},$$

where a is a constant and s and t are scalar parameters.

Given that the two lines intersect,

- (i) find the position vector of their point of intersection, [4]
- (ii) find the value of a. [2]

Given also that θ is the acute angle between the lines,

(iii) find the value of
$$\cos \theta$$
 in the form $k\sqrt{5}$ where k is rational. [4]

Turn over

8. A small town had a population of 9000 in the year 2001.

In a model, it is assumed that the population of the town, P, at time t years after 2001 satisfies the differential equation

$$\frac{dP}{dt} = 0.05 P e^{-0.05t}$$
.

- (i) Show that, according to the model, the population of the town in 2011 will be 13 300 to 3 significant figures. [7]
- (ii) Find the value which the population of the town will approach in the long term, according to the model. [3]
- **9.** A curve has parametric equations

$$x = t(t-1), y = \frac{4t}{1-t}, t \neq 1.$$

(i) Find
$$\frac{dy}{dx}$$
 in terms of t. [3]

The point P on the curve has parameter t = -1.

(ii) Show that the tangent to the curve at P has the equation

$$x + 3y + 4 = 0. ag{3}$$

The tangent to the curve at P meets the curve again at the point Q.

(iii) Find the coordinates of Q. [6]