Core Mathematics 4 Paper F

1.

$$
\mathrm{f}(x)=\frac{x^{4}+x^{3}-13 x^{2}+26 x-17}{x^{2}-3 x+3} .
$$

Find the values of the constants A, B, C and D such that

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+A x+B+\frac{C x+D}{x^{2}-3 x+3} . \tag{4}
\end{equation*}
$$

2. Use the substitution $u=1-x^{\frac{1}{2}}$ to find

$$
\begin{equation*}
\int \frac{1}{1-x^{\frac{1}{2}}} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

3. A curve has the equation

$$
\begin{equation*}
4 \cos x+2 \sin y=3 . \tag{4}
\end{equation*}
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin x \sec y$.
(ii) Find an equation for the tangent to the curve at the point $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$, giving your answer in the form $a x+b y=c$, where a and b are integers.
4. (i) Express $\frac{3 x+6}{3 x-x^{2}}$ in partial fractions.
(ii) Evaluate $\int_{1}^{2} \frac{3 x+6}{3 x-x^{2}} \mathrm{~d} x$.
5.

The diagram shows the curve with equation $y=4 x^{\frac{1}{2}} \mathrm{e}^{-x}$.
The shaded region bounded by the curve, the x-axis and the line $x=2$ is rotated through four right angles about the x-axis.

Find, in terms of π and e , the exact volume of the solid formed.
6. $\mathrm{f}(x)=\frac{3}{\sqrt{1-x}},|x|<1$.
(i) Show that $\mathrm{f}\left(\frac{1}{10}\right)=\sqrt{10}$.
(ii) Expand $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(iii) Use your expansion to find an approximate value for $\sqrt{10}$, giving your answer to 8 significant figures.
(iv) Find, to 1 significant figure, the percentage error in your answer to part (c).
7. Relative to a fixed origin, two lines have the equations

$$
\begin{aligned}
& \mathbf{r}=\left(\begin{array}{c}
7 \\
0 \\
-3
\end{array}\right)+s\left(\begin{array}{c}
5 \\
4 \\
-2
\end{array}\right) \\
& \mathbf{r}=\left(\begin{array}{l}
a \\
6 \\
3
\end{array}\right)+t\left(\begin{array}{c}
-5 \\
14 \\
2
\end{array}\right),
\end{aligned}
$$

where a is a constant and s and t are scalar parameters.
Given that the two lines intersect,
(i) find the position vector of their point of intersection,
(ii) find the value of a.

Given also that θ is the acute angle between the lines,
(iii) find the value of $\cos \theta$ in the form $k \sqrt{5}$ where k is rational.
8. A small town had a population of 9000 in the year 2001.

In a model, it is assumed that the population of the town, P, at time t years after 2001 satisfies the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=0.05 P \mathrm{e}^{-0.05 t}
$$

(i) Show that, according to the model, the population of the town in 2011 will be 13300 to 3 significant figures.
(ii) Find the value which the population of the town will approach in the long term, according to the model.
9. A curve has parametric equations

$$
x=t(t-1), \quad y=\frac{4 t}{1-t}, \quad t \neq 1
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The point P on the curve has parameter $t=-1$.
(ii) Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
x+3 y+4=0 \tag{3}
\end{equation*}
$$

The tangent to the curve at P meets the curve again at the point Q.
(iii) Find the coordinates of Q.

